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Abstract- The rapid advancement of autonomous vehicle technology has paved the way for autonomous racing, 

where the high-speed, competitive nature of motorsports fosters accelerated innovation. One of the primary 

challenges in this domain is determining the optimal path commonly referred to as the racing line for autonomous 

vehicles. Traditional methods for identifying such trajectories often either fall short in terms of time optimization 

or demand high computational resources, making them impractical for real-time execution on embedded 

hardware. 

This paper presents a machine learning-based solution that enables real-time prediction of racing lines using 

desktop-level computing resources. The method utilizes a feedforward neural network trained on a dataset of 

racing lines derived from conventional optimal control-based lap time simulations across numerous circuits. The 

model achieves a mean absolute prediction error of ±0.27 meters, with an impressive ±0.11 meters accuracy at 

corner apexes comparable to both professional drivers and existing autonomous driving control systems. Notably, 

the system generates trajectory predictions in just 33 ms. These results highlight the potential of data-driven 

models to deliver near-optimal racing line predictions more efficiently than conventional computational methods, 

especially in time-sensitive applications. 

Keywords: Self-Driving Race Car, Lap Time Prediction, Ideal Racing Trajectory, Path Planning, Artificial Neural 

Networks, Data-Driven Learning, Machine Learning. 

1. INTRODUCTION 

The rapid growth of Autonomous Vehicle (AV) technology holds the promise of significantly reducing traffic-

related fatalities, as human error accounts for the vast majority of roadway incidents [1]. This progress has also 

fueled the emergence of autonomous racing a domain where the competitive and controlled setting of a racetrack 

serves as a powerful platform for testing, refining, and accelerating innovation in AV systems [2]. In such 

scenarios, vehicles are often designed to operate without any human intervention, and in some cases, they may be 

completely undrivable by a human operator [3]. As a result, the autonomous system must independently perceive 

its surroundings and generate its own motion plan making accurate and efficient path computation a critical 

component of its performance. 

In motorsports, Lap Time Simulators (LTS) are widely utilized as a cost-efficient and practical means of analyzing 

how changes in vehicle configuration influence lap performance. These tools also facilitate optimization routines 

aimed at identifying the most effective setup for initiating on-track trials. However, due to variations in speed 

characteristics, corner geometry, and other track-specific factors, the optimal configuration derived for one circuit 

typically does not generalize well to others. Consequently, each racetrack necessitates its own dedicated 

optimization process. 

Most Lap Time Simulators (LTS) employed by professional racing teams are built upon Quasi-Steady-State (QSS) 

methodologies [4]. In this framework, a vehicle model attempts to traverse a predefined path commonly 

segmented into a sequence of curves with varying radii at the maximum attainable velocity, typically achieved 

through iterative calculations. Some implementations further extend this approach to account for transient 

dynamic behavior of the vehicle [5]. However, the QSS technique generally relies on having prior knowledge of 

the desired path, which is often reconstructed from telemetry or trajectory data logged by expert drivers [6]. Yet, 

acquiring such data is both costly and challenging, even when assisted by GPS technology [7]. Moreover, this 

method assumes the driver followed the optimal line and that the vehicle can be physically driven on the track 

beforehand. Although it is possible to model a circuit using methods like aerial imagery [8], smaller racing teams 

often operating under budget constraints—may not have access to high-fidelity racing line data. In such cases, the 

available trajectory may be imprecise, noisy, or entirely absent. 

In contrast, autonomous vehicles (AVs) must have the capability to compute their own driving trajectories 

preferably in real-time so they can adapt dynamically to changes in the environment, including road geometry and 

traffic conditions, without relying on extensive pre-processing. To drive innovation in this domain, many 

autonomous racing events incorporate trajectory planning challenges under uncertain or constrained conditions. 

These may include tracks that are initially unknown [9,10], disclosed only shortly before the race [11], mapped 

using limited sensing capabilities [12], or containing dynamic obstacles that alter the drivable space [13–16]. In 
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such scenarios, the AV may be allowed to construct a track map during an initial reconnaissance lap or adapt to 

evolving track layouts as it drives [17,18]. These events present considerable technical hurdles racing at high 

speeds necessitates extremely fast trajectory planning, while factors such as vehicle mass [19] and power 

limitations emphasize the need to execute this planning with minimal computational overhead. Furthermore, the 

computed path must not only be feasible but should also result in the shortest possible lap time. 

Conventional fast methods for generating a target path often rely solely on the layout of the circuit, producing 

rough estimations that, while efficient, offer no assurance of achieving a time-optimal trajectory [18]. A significant 

number of current approaches to identifying the optimal racing line involve running extensive simulations across 

a wide range of potential paths using a vehicle dynamics model. These simulations then converge toward the 

trajectory that yields the lowest lap time. However, this optimization process is inherently computationally 

intensive and demands substantial processing power [20]. As a result, such methods can be prohibitively time-

consuming when used in traditional Lap Time Simulators (LTS), making them impractical for real-time execution 

in autonomous vehicle systems. 

Accelerating the generation of accurate trajectories to enable real-time execution would offer a substantial 

advantage for autonomous racing vehicles. Furthermore, quickly determining an optimal racing line for a given 

track could prove highly valuable not only in the context of traditional Lap Time Simulator (LTS) tools but also 

as an initial estimate to guide more precise, yet computationally intensive, optimization processes. 

In various domains, model-based Machine Learning (ML) methods are frequently utilized to accelerate problem-

solving by leveraging extensive training datasets to produce rapid predictions of the solution through a trained 

Artificial Neural Network (ANN). These techniques have been proven to address traditionally computationally 

intensive issues not only with speed but also with high accuracy in the outcomes [21]. 

The YOLO object detection algorithm, developed by Redmon and Farhadi [22], is widely used in autonomous 

racing vehicles. It significantly reduces the time required to process camera images to just a few milliseconds, 

enabling real-time, precise object recognition at high frame rates. This is achieved through a neural network 

trained on thousands of manually labeled images [23]. 

The Machine Learning (ML) approach to this type of problem focuses not on computationally solving the issue, 

but on making accurate predictions of the solution based on prior exposure to many similar problem scenarios 

through training. While neural networks have been used in vehicle control, there have been relatively few efforts 

to harness the speed and precision provided by ML techniques for the specific task of predicting an optimal racing 

line [24]. 

This paper presents an ANN approach to predict the ideal racing line, aimed at reducing the calculation time by 

several orders of magnitude. The network can be trained on data from any existing method of optimal trajectory 

generation, thus facilitating predictions based upon highly complex models to be made within milliseconds. This 

enables the target path to be calculated much more rapidly than with traditional methods reducing computational 

burden for traditional lap time simulators, and facilitating real-time application in an autonomous racing vehicle 

using on-board hardware. This original approach provides an unprecedented reduction in the time taken to 

generate the ideal racing line, with minimal loss in accuracy of the solution. 

2. LITERATURE REVIEW 

Basic methods for determining a target path typically involve following the shortest route or the Minimum 

Curvature Path (MCP), which Heilmeier et al. [25] demonstrated could be calculated in approximately 18 seconds 

for the Roborace autonomous racing vehicle. Although the MCP can be computed quickly, it only provides an 

approximation of the racing line – which may not lead to the fastest lap time [18] and does not account for the 

unique characteristics of different vehicles. When a higher level of precision in the racing line (and thus the lap 

time and vehicle setup) is required, this approach proves inadequate. 

Most current methods for determining a time-optimal solution rely on the free-trajectory Optimal Control Problem 

(OCP) approach to lap time simulation. In this method, a simulator generates the necessary driver commands for 

a dynamic vehicle model to follow any path within the circuit's boundaries. The throttle, brake, and steering inputs 

are typically optimized at various discretized points on the track to achieve the minimum time, resulting in the 

optimal racing line [26]. This technique allows for the use of complex, fully dynamic vehicle models [27] and 

enables adjustments to the path based on changes in vehicle parameters [4], producing a highly accurate, vehicle-

specific racing line. 

However, due to the complexity of solving the vehicle model's trajectory at each discretized point, the computation 

time for the OCP approach is generally much longer than the actual lap time [20], with simulators that use simpler 

vehicle models taking around 15 minutes to solve a lap [7,28]. Lot and Dal Bianco’s [29] more advanced model, 

with 14 Degrees of Freedom, took approximately 28 minutes to solve a lap. The free-trajectory method, essential 

for determining the racing line, usually requires significantly more time to solve compared to a LTS that follows 

a pre-defined path [30]. While OCP methods provide accurate, time-optimal solutions for the racing line, their 

computational demands typically make them unsuitable for real-time applications. 

In an autonomous vehicle (AV), it is essential to perform these calculations in real-time or even faster, using 

onboard processing hardware. Jain and Moraro [31] tackled this challenge with Bayesian optimization, enabling 
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the calculation of a racing line in under three minutes. While this allows for quick pre-computation of a new circuit 

after an initial sighting lap, it is still not fast enough to compute the racing line for subsequent laps while driving 

the current one at speed. Christ et al. [32] modeled variable tire-road friction on the Berlin Formula E circuit for 

the Roborace autonomous vehicle, utilizing CasADi [33] to reduce the simulation time to under two minutes yet 

still slower than the lap time. Kapania et al. [18] achieved near real-time path planning through an iterative, two-

step process (using the MCP as a preliminary calculation), generating a trajectory for an autonomous racing car 

within 26 seconds, which is faster than the lap time. However, the vehicle behavior was simplified to a bicycle 

model, leading to an approximation of the racing line that, while generally accurate, shows significant 

discrepancies of several meters in certain areas when compared to other trajectories [18]. 

Machine learning has been explored in the past for real-time vehicle control, often leading to the identification of 

an optimal path as a result of the vehicle's motion. For instance, Salem et al. [34] combined evolutionary learning 

with a fuzzy-logic controller to refine the vehicle's control inputs and racing line. This approach resulted in a 

controller capable of driving the vehicle around a circuit based on insights gained from previous iterative trials, 

although further development is needed for the vehicle to navigate multiple circuits. Yu et al. [35] applied 

Reinforcement Learning (RL) to learn basic control inputs for a simple 1980s Outrun racing game [36], while 

Balaji et al. [37] implemented an end-to-end RL system in a simulator to teach a real (1/18th scale) vehicle to 

drive using camera images. However, the vehicle was incentivized to follow the track’s centerline rather than a 

true racing trajectory. 

Another machine learning approach involves learning from human drivers. Fridman et al. [38] trained an end-to-

end autonomous driving algorithm using 4.2 million video frames collected from a Tesla. However, most methods 

for road applications focus on safely navigating the road environment, rather than optimizing the path for speed. 

An end-to-end approach was tested for autonomous racing by Koppula [39], who observed that the method was 

"insufficient to produce smooth steering behaviors" in simulation. In general, end-to-end approaches tend to 

generate vehicle control inputs from sensor or camera data [40], rather than directly predicting a target path ahead. 

There are few studies that directly apply machine learning to the task of generating a racing line. Cardamone [41] 

used a genetic evolution-based ML technique to iteratively refine the target path, ultimately finding the optimal 

trajectory for a specific circuit. Although the vehicle model used in this study was simple, limiting the accuracy 

of the generated line, it still represented a significant improvement over the MCP. A similar approach was adopted 

by Vesel [42], who introduced a 'healing' sub-process to enhance performance. However, these methods are 

restricted to providing a trajectory for the specific circuit on which they were trained. Weiss & Behl [43] utilized 

a convolutional neural network to learn a racing trajectory ahead of the vehicle in a racing game, generating 

vehicle control inputs that outperformed traditional end-to-end methods. However, it remains unclear if the system 

can handle a previously unseen circuit. In a similar vein, Capo & Loiacono [24] employed reinforcement learning 

to plan a short-term trajectory directly ahead of the vehicle for gaming applications. While this method attempts 

to minimize lap time and can plan a trajectory for a new circuit, the "learned behavior is still far from the 

performance of professional racing drivers" [24], partly due to the representation of the target path as a single 

point ahead of the vehicle. 

At present, there is no widely accepted conventional method for generating a highly accurate racing line for a 

previously unseen circuit in real-time or faster. Machine learning techniques hold the potential to drastically 

reduce solution times, making their application to the task of identifying the ideal racing line particularly 

promising. This could enable the planning of a racing line at remarkable speed with minimal loss of accuracy, 

thereby supporting the real-time demands of an autonomous racing vehicle. 

3. METHODOLOGY 

This study utilizes a feed-forward artificial neural network (ANN) trained on a dataset of racing lines from various 

circuits. This allows for the rapid generation of racing lines for previously unseen circuits, based on the trajectories 

found in the training data. For an ANN to make accurate predictions, it must be trained on a dataset that covers 

the full spectrum of features that may be present in the new, unseen problem. As a result, an extensive dataset was 

created. The inner and outer boundaries of a large number of real circuits were reconstructed and then augmented 

to expand the dataset to include over 6,000 tracks, divided into 2.7 million individual segments. An optimal racing 

line for each circuit was generated using an existing OCP-based lap time simulation, thereby completing the 

dataset. 

Each circuit is divided into smaller segments using the sliding window technique, allowing the network to learn 

the racing line for individual sections of the track rather than the entire circuit. This approach enables the network 

to handle circuits of varying lengths and generalize track sections across multiple circuits. After segmentation, 

data describing the vehicle’s position on the track and the surrounding circuit geometry were extracted for various 

waypoints throughout the lap. These "features" were then used to train the network using the majority (86%) of 

the dataset. 

Once trained, the ANN can calculate the features for a new, previously unseen circuit, thereby generating a 

prediction of the racing line. The network's hyperparameters were fine-tuned to enhance prediction accuracy, using 

an additional 9% of the dataset. K-Fold analysis [44] was employed for this process. Finally, the system's overall 
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performance is assessed by comparing the generated racing lines to the remaining 5% of the dataset, which 

consists of circuits the network has not encountered before. The methodology is detailed in the following 

subsections, with results presented in Section 3. 

3.1 Training Data Generation 

The dataset utilized in this study includes the inner and outer track boundaries, as well as the optimal racing line 

for each circuit. No specific method is prescribed for generating the ideal racing line in the dataset it could be 

derived from a high-order free-trajectory OCP method (e.g., Lot and Dal Bianco [29]), obtained through a Driver-

in-Loop simulator (where it would reflect the preferred lines of a particular driver), or produced by any other 

conventional method for determining the racing line. 

Before generating the optimal racing lines in the training data, it was first necessary to reconstruct a large set of 

circuits. The inner and outer boundaries were obtained for 82 real circuits from around the world, including several 

Formula 1 tracks (60 manually created and 22 sourced directly from TUMFTM [45]). In line with common 

practices in machine learning studies [23], augmentation techniques were applied to expand the dataset to a total 

of 6,058 circuits by scaling, flipping, and reversing the direction of travel for each track. Efforts were made to 

ensure that both the training and validation datasets contained an equal proportion of real circuits, with a larger 

share of real circuits reserved for final testing. A total of 288 circuits (comprising 9 real-world circuits and 279 

augmented versions) were used as test data to evaluate the network's performance on a completely new, unseen 

circuit. 

To generate the optimal trajectory for each circuit in the dataset, the Global Race Trajectory Optimization tool 

[46], developed by Christ et al. [32], was chosen. The default solver settings and vehicle parameters for the 

Roborace vehicle were used. This tool utilizes a double-track vehicle model with QSS weight transfer and non-

linear tire models, which are converted into a nonlinear programming problem (NLP) using Gauss-Legendre 

collocation and solved with IPOPT. To reduce computation times, a curvilinear abscissa track description and the 

CasADi framework were employed. This approach strikes a balance between the accuracy of the generated racing 

line and the time required to compute optimal paths for each circuit in the dataset. Solving over 6,000 optimal 

laps would have taken approximately two weeks on a single processor thread, so to accelerate the process, the 

workload was distributed across multiple PCs with multi-core processors. 

The training data was further expanded by dividing each circuit into a series of overlapping segments (or 

windows), resulting in a dataset containing over 2.7 million segments from different racetracks, each paired with 

the optimal racing line for that segment. The rationale, process, and benefits of this segmentation approach are 

detailed in Section 2.2. The total size of the dataset needed for accurate prediction of the ideal racing line was 

determined experimentally, following a methodology similar to that of Roh et al. [47]. 

All optimal trajectories were calculated under the assumption of a zero vehicle width, meaning the vehicle's 

centerline occupies the full width of the track. This approach allows for the exclusion of the vehicle width 

parameter from the training data, with the width being accounted for only when the network predicts the target 

path. As a result, the vehicle width can be adjusted after the network has been trained. 

3.2 Circuit Sectoring Using Dynamic Windows 

Each circuit was divided using a series of lines (or Normals) perpendicular to the track centerline, with the point 

where the vehicle trajectory intersects each line identified as a "waypoint." Although it is common [26,48] to vary 

the spacing between these lines to reduce resolution on straights (and thus reduce computational effort), a fixed 

interval of five meters was chosen. Maintaining a consistent interval benefits the network by removing an 

additional variable, thereby reducing the dimensionality of the input. In cases where two or more Normal lines 

intersect (e.g., at a tight hairpin bend), the lines are adjusted to become "Pseudo-Normals," where the angle 

between the Normal and the track centerline is modified away from 90 degrees until the lines no longer intersect 

(see Figure 1). This information is then encoded and fed into the network as detailed in Section 2.3. 

Similar to how a human driver looks ahead on the circuit, several other studies [26,43] use a forward-looking 

"preview" to guide the vehicle's subsequent behavior. However, the racing line at any given point on the circuit is 

influenced by both the preceding curvature (which determines the vehicle's current position) and the upcoming 

curvature of the track. This allows the network to learn not only how the vehicle reached its current position but 

also where the trajectory is headed next. 

Instead of passing all the track Normals for an entire circuit to the neural network, the data is divided into sections 

using the sliding window technique. This means the circuit is represented as a series of overlapping windows, 

each consisting of a fixed number of Normal lines and corresponding waypoints. This approach offers several 

advantages: the network input remains a fixed size, allowing it to handle circuits of varying lengths (e.g., 

Nürburgring Grand Prix circuit (5.14 km) and Red Bull Ring Circuit (4.31 km)); the network benefits from 

learning from a larger number of windows across different racetracks, helping it generalize behavior across circuits 

with similar features; and the sliding window method significantly increases the amount of data generated from 

each circuit, reducing the number of circuits needed in the training dataset. 

Mathematically, each circuit is represented by a series of overlapping windows, each containing information about 

the track Normals both before and after the central Normal within the window. For a given Foresight value f, the 
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window (ti) is formed by including the ordered set of track Normals surrounding and including the Normal line 

Ni (Ni−f,…., Ni , Ni+f) . The neural network g is then trained on these windows to predict the location of the 

waypoints for a given track section, g(ti) → wi, where wi denotes the waypoint location on the Normal Ni. The 

tuning of the Foresight parameter is discussed in section 2.4.2. Once trained, the trajectory for an unseen track is 

calculated by predicting the waypoints for each window of the new circuit using the fully trained network. 

 

Fig. 3.1 (a) The circuit is segmented using lines that are perpendicular to the centreline of the track. 

(b) The racing line intersects with these segments at specific points known as waypoints 

In this study, the Foresight is symmetric and optimized to minimize the prediction error for a circuit presented to 

the network in its entirety. However, the windowed approach means the trajectory is repeatedly planned for the 

area immediately surrounding the vehicle, which suggests that the Foresight could be linked to the perception 

sensors of an autonomous vehicle (AV). This makes the technique well-suited for rapid real-time trajectory 

planning in an autonomous road-going vehicle. 

3.3 Extraction of Features 

Instead of learning the racing line for an entire circuit, the network is trained on data describing how the circuit 

and its corresponding racing line flow through each of the windows outlined in section 2.2. This approach provides 

the ANN with the necessary data to infer key semantic information, allowing it to generalize a function that 

generates the target trajectory. To ensure that this information about the circuit and racing line is captured 

accurately, it must be encoded in a lossless manner. As such, features are extracted from the training data, including 

the circuit width (or length of each Normal), the racing line position on the track (or waypoint position along the 

Normal), and details about the curvature of the circuit at each Normal. 

Many existing LTS represent the target racing line as a curvature profile, which helps in calculating maximum 

cornering velocities [6,49]. However, as the circuit curves, the radius of curvature changes in a highly nonlinear 

fashion, shrinking to just a few meters at tight hairpins and approaching infinity on straight sections. To address 

this, the circuit is instead represented by the variations between the Normal lines that describe its structure, rather 

than relying on the curvature itself (Figure 3.2). 

 
Fig. 3.2 The layout of the track is depicted on the left, while the right side illustrates the racing line using 

defined waypoints 

The circuit geometry is represented by encoding the features for each Normal as follows: the length of the Normal 

l, the angular change between Normal α, and the angle θ between the Normal and the true normal to the track 

centerline (which is 90 degrees, except in the case of an adjusted ‘pseudo-Normal’). These features are 

incorporated into the network by allocating three dimensions in the input space for each Normal within a given 

window (Figure 3). By preserving the sign of each angle, the system can differentiate between left and right-hand 

bends. 

The racing line is characterized by determining the location of the waypoint along each Normal, denoted by the 

feature w, which ranges from zero to one, representing the left and right sides of the Normal, respectively. The 
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network is then trained using the w values for each window in the training data, allowing it to predict the racing 

trajectory for a new, unseen circuit. 

3.4 Neural Network 

A feed-forward ANN was chosen for this study due to the regression nature of the problem [50] and the relatively 

low computation time required for generating predictions with this type of network. This section provides an 

overview of the network's structure and the tuning process used to identify the optimal parameters, implemented 

using the Keras framework [51]. 

3.4.1 Architecture of the Neural Network 

The network architecture consists of four fully connected layers, utilizing the Huber loss function [52] and the 

Nadam optimizer [53], chosen based on experiments with various hyperparameters. The number of units in each 

layer was determined through a grid search method, resulting in 250 units in the first layer, 50 in the second, and 

50 in the third hidden layer (Figure 3). 

The network performed optimally when the activation functions sigmoid and hard sigmoid [54] were applied to 

the hidden and output layers, respectively. 

The output dimensions are defined by the sampling level s (as described in section 2.4.2). Training the network 

took about 90 minutes on a 2.40 GHz Intel(R) Core (TM) i5-9300H processor. 

3.4.2 Sampling of Output 

Reducing the output size of the network helps minimize dimensionality, which in turn enhances the network’s 

ability to generalize and improves prediction accuracy. Instead of predicting every waypoint within a window, 

fewer waypoints are predicted and combined with those sampled from adjacent windows, thus constructing the 

complete predicted racing line for the entire lap. 

 

Fig. 3.3 Modifying the Sampling Level Results in a Smoothing Effect on the Predicted Trajectory 

To ensure the racing line flows smoothly from one waypoint to the next, the network predicts multiple waypoints 

on either side of the central Normal within each window. These predicted waypoints are then averaged with those 

from neighboring windows, rather than relying on the single central waypoint in each window. 

This approach creates a "moving average" effect for each predicted waypoint, resulting in a smoother racing line. 

The sampling level (s) controls how many pairs of surrounding waypoints the network predicts for each track 

segment. When s = 0, the network only predicts a single waypoint for each Normal, resulting in no averaging. 

However, when s = 2, the network predicts five waypoints (the central one and two on each side) for each Normal. 

After passing each track segment through the network, there will be 2s + 1 predictions of the waypoint location 

for each Normal. These predictions are then averaged to produce a smoother racing line. This averaging process 

helps eliminate noise and ensures that the trajectory follows a more consistent and continuous path. 

A sampling level of s = 4, which results in nine network outputs, was found to be the optimal choice for this 

study. This configuration provided the highest accuracy in predicting the racing line for the validation data.  

By predicting multiple waypoints within each window and averaging them, the resulting racing line flowed 

smoothly from waypoint to waypoint. This approach eliminated the need for computationally expensive filtering 

techniques, such as those used by Heilmeier et al. [25], and ensured a more efficient and accurate prediction of 

the racing line. 
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4. RESULTS 

To evaluate the performance of the ANN, predictions were made for circuits that were not part of the training data 

(i.e., previously unseen circuits in the testing dataset). These predictions were then compared against the racing 

lines generated using the Optimal Control Problem (OCP) method provided by TUMFTM [46]. The comparison 

focused on two main aspects: 

➢ Accuracy of the Generated Line: The accuracy of the racing line predicted by the ANN was assessed by 

comparing it to the optimal line obtained through the OCP method. This evaluation helped determine 

how closely the ANN’s predictions matched the ideal racing lines for each circuit. 

➢ Solution Time: The time taken by the ANN to generate a racing line was compared to the computational 

time required by the OCP method. The goal was to demonstrate that the ANN could generate the racing 

line more rapidly, making it suitable for real-time applications in autonomous racing vehicles. 

4.1 Racing Line Prediction Accuracy 

The racing lines predicted by the ANN and the OCP method for the Brands Hatch GP and Nürburgring GP circuits 

are displayed below, with lateral deviation plots included for detailed comparison. Figure 4.1 presents the 

predicted racing lines for the Nürburgring Grand Prix circuit, comparing the ANN's prediction with the OCP-

generated racing line. Similarly, Figure 6 shows the predicted racing lines for the Red Bull Ring Circuit. 

These figures facilitate a visual and numerical comparison of the prediction accuracy, focusing on how closely 

each method follows the optimal racing line and the magnitude of lateral deviations at various points on the track. 

 
Fig. 4.1 A comparison between the racing line generated by the Artificial Neural Network (ANN) and the 

one derived using the Optimal Control Problem (OCP) approach for the Nürburgring Grand Prix circuit 

 

Fig. 4.2 A comparison between the racing line generated by the Artificial Neural Network (ANN) and the 

one derived using the Optimal Control Problem (OCP) approach for the Red Bull Ring Circuit 
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The trajectories predicted by the ANN are qualitatively similar to those calculated using the OCP method, 

following near-identical paths at most apexes, where the racing line has the most impact on lap time, due to the 

relative consistency of the optimal mid-corner racing line in the training data. 

The maximum deviations between the ANN’s prediction and the OCP method typically occur in areas with more 

complex and unusual features, such as the straight with a subtle bend before an upcoming corner at Nürburgring 

GP, or the intricate combination of consecutive turns that influence each other (Figure 4.1). Larger, sustained 

deviations are generally observed during straights; however, this behavior is common in many methods for 

calculating the optimal line and is considered less important, as a slight difference in vehicle position during a 

straight has minimal impact on lap time. 

The highest accuracy is observed for different circuits, which feature characteristics frequently encountered in the 

training dataset, such as constant radius turns at the end of a straight, moderate-length straights, and average track 

widths. 

Circuits that deviate significantly from the 'average' features in the training dataset such as those with complex 

corners of varying radii, rapid successions of multiple bends, or very short straights may present "edge cases" that 

are underrepresented in the training data or unseen by the ANN. For these circuits, the predicted racing line 

becomes a more generalized approximation biased toward the center of the dataset, leading to reduced prediction 

accuracy. This is evident in circuits like Paul Ricard (which features long straights and double-apex corners with 

varying radii) and the 20.8 km Nordschleife (which contains numerous complex corners and an exceptionally long 

straight). To mitigate the error caused by this sample bias, the training dataset should be centered around circuits 

with similar features to those for which predictions are needed. For instance, if predictions are required for a small 

kart track, training the ANN on a dataset consisting only of F1-style circuits would result in reduced accuracy. 

Diversification should be achieved by including a broader selection of original circuits in the training data, rather 

than relying on augmentations of a limited number of circuits as done in this study. Revealing a Mean Absolute 

Error (MAE) of ±0.27 m (±0.38 m Root Mean Squared Error (RMSE)) on average for all circuits in the testing 

dataset, reflecting the behavior observed across the nine real-world circuits. 

The distribution of errors closely follows a Laplace distribution, with a 38% Confidence Interval (CI) of just ±0.18 

m and a mean close to zero. The authors suggest that the symmetrical distribution with an almost zero offset is a 

result of flipping and reversing each circuit in the training data, ensuring the network was trained on an equal 

number of left and right-hand bends. At the corner apex where prediction accuracy is most critical the average 

error is reduced to just ±0.11 m across all circuits in the testing dataset. 

The error distribution provides a 68% Confidence Interval (CI) of ±0.83 m, which is smaller than the variations 

observed in human racing drivers. For example, Brayshaw and Harrison [7] found that the lines taken by four 

professional racing drivers varied by more than ±1 m. This suggests that the ANN is capable of generating a 

trajectory comparable to a human racing driver’s ability to identify and follow the optimal path, although many 

other factors can influence a human driver's choice of line. In real-world context, the prediction errors are smaller 

than the ±0.31 m MAE change in the optimal line due to localized (±10%) variations in the friction coefficient of 

the track surface observed by Christ et al. [32], or the ±1 m (95% CI) change in the optimal path resulting from 

adjustments in vehicle design parameters [7]. 

In comparison to existing methods for generating a racing line, the difference between the ANN’s prediction and 

the OCP is of a similar magnitude to the variance observed between trajectories calculated by other traditional 

approaches. For instance, Dal Bianco et al. [49] observed an approximate apex error of ±0.08 m when comparing 

their direct and indirect methods, while the discrepancy between the ANN and OCP in this study is ±0.11 m. 

Kapania et al. [18] reported a much larger discrepancy of ‘several meters’ between trajectories calculated by the 

rapid 2-step algorithm and a traditional solver, which is considerably greater than the ±0.83 m (95% CI) difference 

between the ANN and OCP in this study. However, it is important to note that many existing methods calculate 

the trajectory alongside other data (such as velocity trace, accelerations, and vehicle control inputs), which is 

currently beyond the scope of this study. 

From the perspective of autonomous vehicle (AV) control, the ANN’s prediction accuracy is comparable to the 

accuracy of map generation in an autonomous racing vehicle at racing speed, as reported by Andresen et al. [56] 

(±0.39 m vs. ±0.29 m RMSE, respectively). The accuracy is qualitatively similar to that achieved by a path-

following driver model following a racing line at speed in an autonomous racing car [23,57], as well as by a road-

going AV in Wang et al. [58]. 

4.2 Computational Time 

The typical solution time for generating a racing line for a previously unseen track using the neural network is 33 

milliseconds on a 2.40 GHz Intel Core i5-9300H processor over 950 times faster than the OCP method for the 

majority of normal-length circuits. An interesting feature of the ANN approach is that the windows can be 

calculated simultaneously, whereas conventional approaches proceed iteratively around the circuit. As a result, 

solution times for very long circuits, such as the 20.8 km Nordschleife, are barely increased compared to shorter 

tracks 500 ms for the ANN versus 86 minutes for the OCP method. This makes the ANN approximately 5000 

times faster at generating a racing line for this particular circuit. 
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The method proposed in this study is approximately 800 times faster than Kapania et al.’s [18] two-step approach, 

which, to the authors’ knowledge, was previously the fastest known method for generating a non-trivial racing 

line, while also delivering a significantly more accurate solution. 

DISCUSSION 

The qualitative and quantitative comparisons presented in Section 3.1 demonstrate that this radically different 

approach to finding the racing line results in accurate predictions, offering comparable or reduced error compared 

to other traditional methods for calculating the optimal trajectory, the ability of a human racing driver to identify 

and follow an optimal path, the effect of small changes in friction or vehicle parameters, and an autonomous 

vehicle’s ability to map and track a target path. However, the real benefit of this approach to racing line generation 

lies not in the accuracy of the prediction, but in the speed and computational efficiency of obtaining an accurate 

solution. 

The ANN delivers an incredibly rapid prediction of the racing line, representing a vast reduction in solution time 

compared to traditional methods, with minimal sacrifice in accuracy. The current implementation is capable of 

making predictions for a pre-defined vehicle on an unknown circuit. However, it does not account for differences 

in track or weather conditions or adjustments to vehicle parameters such factors would require a more extensive 

dataset that includes such effects. Since changes to racing lines due to differences in vehicle parameters are 

typically small [7], this method enables the generation of a generic racing line for use in QSS simulations (i.e., 

the majority of widely-used LTS software). 

The technique is ideally suited for generating the target path in real-time, making it highly applicable for online 

trajectory planning in an AV with minimal computational resources. The ‘windowed’ nature of the approach 

ensures that the trajectory is simultaneously planned for all sections of the road ahead, enabling the adaptation of 

the technique to address dynamically changing road conditions. This could include recovery after an unpredictable 

event or adjustments in trajectory to avoid other road users [59]. While such a method would require extensive 

offline pre-training (e.g., using datasets from real or simulated road events), the parallel nature of online planning 

allows multiple paths to be predicted concurrently. As a result, the AV could generate a trajectory through all 

possible routes in real-time, opening up exciting possibilities for applications like overtaking maneuvers, 

unexpected event recovery, and accident-avoidance systems. 

Due to the long computational times required by many of the more accurate time-optimal approaches for finding 

the optimal racing line, a simple MCP or QSS pre-calculation is often used as a starting point to expedite the 

process by constraining the problem [57]. The method presented in this paper could be coupled with a time-

optimal simulator to provide an exceptionally fast and accurate initial approximation. This could then serve as a 

pre-calculation, allowing for further fine-tuning through additional optimizations, such as minimum-time 

calculations, to refine the solution. 

CONCLUSIONS 

This work has demonstrated the potential of machine learning techniques to generate an extremely rapid prediction 

of the optimal trajectory around a previously unseen circuit. A feed-forward ANN was selected, with Sigmoid and 

Hard Sigmoid activation functions (on the hidden intermediate and output layers, respectively) found to deliver 

the best performance. 

This approach does not solve the problem per se, but rather it rapidly generates an accurate prediction of the 

solution based on prior training with numerous similar problems. To achieve this, the network was trained on 

thousands of circuits. Specifically, this study used track boundaries for 6 real circuits, which were augmented to 

create a total of 96 tracks through various transformations such as scaling, flipping, and reversing. 

An existing Optimal Control method was used to generate a racing line for each track, and the circuits were split 

into sections using a sliding window approach. This resulted in a dataset containing a total of 2.7 million track 

segments. 

The ANN is designed to accept training data from any existing method of generating the racing line, providing a 

prediction based on that data. This means that if a large number of circuits driven by a human driver in a DIL 

simulator, or generated using a complex and accurate method, were used, the ANN would effectively "learn to 

drive like a particular driver (or simulator) in a specific car." The calculation time is independent of the model 

complexity used for training, so if a highly complex, free-trajectory simulator were employed to generate the 

training data, the accuracy of the solution would improve without impacting prediction time. 

Predictions of racing lines for previously unseen circuits were found to have an average mean absolute error of 

±0.27 m, with the highest accuracy at the critical corner apex (±0.11 m). The accuracy of the generated line is 

comparable to, and in many cases better than, other traditional methods for obtaining the racing line. This 

prediction accuracy aligns closely with the capability of a professional racing driver to identify and follow the 

optimal line, as well as the path-following accuracy of an autonomous vehicle control system. 

The network delivers the most accurate predictions when the training data contains a variety of circuits with 

similar features. To minimize prediction errors, the dataset should focus on circuits of comparable size and 

complexity. For instance, if a prediction is required for a small kart track, training the ANN on a dataset composed 
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solely of F1-style circuits would lead to higher prediction errors. Furthermore, to reduce sample bias, the training 

data should be diversified by including a large number of original circuits, rather than relying heavily on 

augmented versions of a few circuits, as was done in this study. 

The ANN generates a prediction for a full-size racing circuit in approximately 33 ms, making this approach over 

9,000 times faster than the rapid OCP method and around 800 times faster than the fastest non-trivial approach 

reported in the literature survey. However, it is important to note that the machine learning approach requires 

extensive training on existing data, and many other methods also generate a speed trace, which is not addressed 

in the current paper's scope. 

The capability to rapidly and accurately predict the optimal racing line makes this method the most efficient 

currently known for planning a complete or partial circuit trajectory. As such, it lends itself well to a variety of 

applications, including generating target paths for conventional simulators like QSS, performing pre-computations 

to shorten processing time in free-trajectory simulators such as OCP, and enabling real-time racing line estimation 

in autonomous race cars. Additionally, the method holds potential for adaptation in advanced use cases like 

overtaking strategies or collision-avoidance path planning in self-driving road vehicles. This approach challenges 

conventional methods for trajectory optimization—where brute-force calculations were the norm—by 

demonstrating that in specific scenarios, a data-driven strategy can achieve equal or greater efficiency without 

compromising accuracy. 
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